To create an information card when you post journals or documents, go to the Item Tracking Code page and turn on the Create SN Info. on posting or Create Lot No. Info on posting toggles. For even more control, go to the Item Tracking Lines page and use the Serial No. Information Card or Lot No. Information Card actions. If you create serial numbers in bulk by using the Create Customized SN or Assign Serial No. actions, you can enable Create SN Information and an information card will be created for each tracking line.
Card Creator Keygen
Brands worldwide trust PLI to support on key business metrics - driving brand sales and new acquisitions with exceptional performance on turnkey card production & fulfillment, consultative marketing support, full-service design services, and a client services team that is second-to-none.
A SIM card (full form: Subscriber Identity Module or Subscriber Identification Module) is an integrated circuit (IC) intended to securely store the international mobile subscriber identity (IMSI) number and its related key, which are used to identify and authenticate subscribers on mobile telephony devices (such as mobile phones and computers). Technically the actual physical card is known as a universal integrated circuit card (UICC); this smart card is usually made of PVC with embedded contacts and semiconductors, with the SIM as its primary component. In practise the term "SIM card" refers to the entire unit and not simply the IC.
A SIM contains a unique serial number (ICCID), international mobile subscriber identity (IMSI) number, security authentication and ciphering information, temporary information related to the local network, a list of the services the user has access to, and two passwords: a personal identification number (PIN) for ordinary use, and a personal unblocking key (PUK) for PIN unlocking. In Europe, the serial SIM number (SSN) is also sometimes accompanied by an international article number (IAN) or a European article number (EAN) required when registering online for the subscription of a prepaid card. It is also possible to store contact information on many SIM cards.
The first SIM cards were the size of credit and bank cards; sizes were reduced several times over the years, usually keeping electrical contacts the same, so that a larger card could be cut down to a smaller size.
SIMs are transferable between different mobile devices by removing the card itself. eSIM is replacing physical SIM cards in some domains, including cellular telephony. eSIM uses a software-based SIM embedded into an unremovable eUICC.
The SIM card is a type of smart card,[1] the basis for which is the silicon integrated circuit (IC) chip.[2] The idea of incorporating a silicon IC chip onto a plastic card originates from the late 1960s.[2] Smart cards have since used MOS integrated circuit chips, along with MOS memory technologies such as flash memory and EEPROM (electrically erasable programmable read-only memory).[3]
The SIM was initially specified by the European Telecommunications Standards Institute in the specification with the number TS 11.11. This specification describes the physical and logical behaviour of the SIM. With the development of UMTS, the specification work was partially transferred to 3GPP. 3GPP is now responsible for the further development of applications like SIM (TS 51.011[4]) and USIM (TS 31.102[5]) and ETSI for the further development of the physical card UICC.
Today, SIM cards are ubiquitous, allowing over 7 billion devices to connect to cellular networks around the world. According to the International Card Manufacturers Association (ICMA), there were 5.4 billion SIM cards manufactured globally in 2016 creating over $6.5 billion in revenue for traditional SIM card vendors.[8] The rise of cellular IoT and 5G networks is predicted to drive the growth of the addressable market for SIM card manufacturers to over 20 billion cellular devices by 2020.[9] The introduction of embedded-SIM (eSIM) and remote SIM provisioning (RSP) from the GSMA[10] may disrupt the traditional SIM card ecosystem with the entrance of new players specializing in "digital" SIM card provisioning and other value-added services for mobile network operators.[3]
There are three operating voltages for SIM cards: 5 V, 3 V and 1.8 V (ISO/IEC 7816-3 classes A, B and C, respectively). The operating voltage of the majority of SIM cards launched before 1998 was 5 V. SIM cards produced subsequently are compatible with 3 V and 5 V. Modern cards support 5 V, 3 V and 1.8 V.[3]
Modern SIM cards allow applications to load when the SIM is in use by the subscriber. These applications communicate with the handset or a server using SIM Application Toolkit, which was initially specified by 3GPP in TS 11.14. (There is an identical ETSI specification with different numbering.) ETSI and 3GPP maintain the SIM specifications. The main specifications are: ETSI TS 102 223 (the toolkit for smart cards), ETSI TS 102 241 (API), ETSI TS 102 588 (application invocation), and ETSI TS 131 111 (toolkit for more SIM-likes). SIM toolkit applications were initially written in native code using proprietary APIs. To provide interoperability of the applications, ETSI chose Java Card.[11] A multi-company collaboration called GlobalPlatform defines some extensions on the cards, with additional APIs and features like more cryptographic security and RFID contactless use added.[12]
SIM cards store network-specific information used to authenticate and identify subscribers on the network. The most important of these are the ICCID, IMSI, authentication key (Ki), local area identity (LAI) and operator-specific emergency number. The SIM also stores other carrier-specific data such as the SMSC (Short Message service center) number, service provider name (SPN), service dialling numbers (SDN), advice-of-charge parameters and value-added service (VAS) applications. (Refer to GSM 11.11.[13])
SIM cards can come in various data capacities, from 8 KB to at least 256 KB.[7] All can store a maximum of 250 contacts on the SIM, but while the 32 KB has room for 33 mobile network codes (MNCs) or network identifiers, the 64 KB version has room for 80 MNCs.[14] This is used by network operators to store data on preferred networks, mostly used when the SIM is not in its home network but is roaming. The network operator that issued the SIM card can use this to have a phone connect to a preferred network that is more economic for the provider instead of having to pay the network operator that the phone discovered first. This does not mean that a phone containing this SIM card can connect to a maximum of only 33 or 80 networks, instead it means that the SIM card issuer can specify only up to that number of preferred networks. If a SIM is outside these preferred networks, it uses the first or best available network.[9]
Each SIM is internationally identified by its integrated circuit card identifier (ICCID). ICCID is the identifier of the actual SIM card itself: i.e. an identifier for the SIM chip. Nowadays ICCID numbers are also used to identify eSIM profiles, and not only physical SIM cards. ICCIDs are stored in the SIM cards and are also engraved or printed on the SIM card body during a process called personalisation. The ICCID is defined by the ITU-T recommendation E.118 as the primary account number.[15] Its layout is based on ISO/IEC 7812. According to E.118, the number can be up to 19 digits long, including a single check digit calculated using the Luhn algorithm. However, the GSM Phase 1[16] defined the ICCID length as an opaque data field, 10 octets (20 digits) in length, whose structure is specific to a mobile network operator.
In practice, this means that on GSM SIM cards there are 20-digit (19+1) and 19-digit (18+1) ICCIDs in use, depending upon the issuer. However, a single issuer always uses the same size for its ICCIDs.
SIM cards are identified on their individual operator networks by a unique international mobile subscriber identity (IMSI). Mobile network operators connect mobile phone calls and communicate with their market SIM cards using their IMSIs. The format is:
The SIM card is designed to prevent someone from getting the Ki by using the smart-card interface. Instead, the SIM card provides a function, Run GSM Algorithm, that the phone uses to pass data to the SIM card to be signed with the Ki. This, by design, makes using the SIM card mandatory unless the Ki can be extracted from the SIM card, or the carrier is willing to reveal the Ki. In practice, the GSM cryptographic algorithm for computing a signed response (SRES_1/SRES_2: see steps 3 and 4, below) from the Ki has certain vulnerabilities[14] that can allow the extraction of the Ki from a SIM card and the making of a duplicate SIM card.
Most SIM cards store a number of SMS messages and phone book contacts. It stores the contacts in simple "name and number" pairs. Entries that contain multiple phone numbers and additional phone numbers are usually not stored on the SIM card. When a user tries to copy such entries to a SIM, the handset's software breaks them into multiple entries, discarding information that is not a phone number. The number of contacts and messages stored depends on the SIM; early models stored as few as five messages and 20 contacts, while modern SIM cards can usually store over 250 contacts.[20]
The full-size SIM (or 1FF, 1st form factor) was the first form factor to appear. It was the size of a credit card (85.60 mm 53.98 mm 0.76 mm). Later smaller SIMs are often supplied embedded in a full-size card from which they can be removed.
The micro-SIM was introduced by the European Telecommunications Standards Institute (ETSI) along with SCP, 3GPP (UTRAN/GERAN), 3GPP2 (CDMA2000), ARIB, GSM Association (GSMA SCaG and GSMNA), GlobalPlatform, Liberty Alliance, and the Open Mobile Alliance (OMA) for the purpose of fitting into devices too small for a mini-SIM card.[17][22] 2ff7e9595c
Comments